Periodic solutions of partial functional differential equations
نویسندگان
چکیده
منابع مشابه
Periodic Solutions for Some Partial Neutral Functional Differential Equations
In this work, we study the existence of periodic solutions for partial neutral functional differential equation. We assume that the linear part is not necessarily densely defined and satisfies the Hille-Yosida condition. In the nonhomogeneous linear case, we prove that the existence of a bounded solution on R+ implies the existence of a periodic solution. In nonlinear case, we use the concept o...
متن کاملPeriodic Solutions for Some Partial Functional Differential Equations
We study the existence of a periodic solution for some partial functional differential equations. We assume that the linear part is nondensely defined and satisfies the Hille-Yosida condition. In the nonhomogeneous linear case, we prove the existence of a periodic solution under the existence of a bounded solution. In the nonlinear case, using a fixed-point theorem concerning set-valued maps, w...
متن کاملPeriodic Solutions of Nonlinear Partial Differential Equations
As the existence theory for solutions of nonlinear partial differential equations becomes better understood, one can begin to ask more detailed questions about the behavior of solutions of such equations. Given the bewildering complexity which can arise from relatively simple systems of ordinary differential equations, it is hopeless to try to describe fully the behavior which might arise from ...
متن کاملPositive periodic solutions of functional differential equations
We consider the existence, multiplicity and nonexistence of positive o-periodic solutions for the periodic equation x0ðtÞ 1⁄4 aðtÞgðxÞxðtÞ lbðtÞf ðxðt tðtÞÞÞ; where a; bACðR; 1⁄20;NÞÞ are o-periodic, Ro 0 aðtÞ dt40; Ro 0 bðtÞ dt40; f ; gACð1⁄20;NÞ; 1⁄20;NÞÞ; and f ðuÞ40 for u40; gðxÞ is bounded, tðtÞ is a continuous o-periodic function. Define f0 1⁄4 limu-0þ f ðuÞ u ; fN 1⁄4 limu-N f ðuÞ u ; i0...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society, Series B
سال: 2021
ISSN: 2330-1511
DOI: 10.1090/bproc/63